
BabelMR @ SDA 2023

BabelMR: A Polyglot Framework
for Serverless MapReduce

Fabian Mahling, Paul Rößler, Thomas Bodner, Tilmann Rabl
thomas.bodner@hpi.de

SDA Workshop | 1 September 2023

mailto:thomas.bodner@hpi.de

BabelMR @ SDA 2023

You are a data professional

» Build and run a complex data pipeline at scale

» Requirements:
1. Pipeline stages in different languages, environments, and data engines
2. Enable distributed data-parallel execution
3. Operate underlying infrastructure

» What do you do with little expertise in… ?
1. Porting applications to distributed computing frameworks
2. Distributed and parallel data processing
3. Cluster management

2

BabelMR @ SDA 2023

BabelMR: A Serverless System for Arbitrary
Containerized MapReduce Applications

» Wraps arbitrary containerized applications to maximize portability
› Applications are black boxes to the system

» Exposes MapReduce programming model to simplify data-parallel execution
› Pragmatic choice over richer models

» Builds on serverless infrastructure to simplify cluster management
› Current commercial public clouds (AWS, Azure, GCP, …)

3

BabelMR @ SDA 2023

Agenda

» Primer
› The MapReduce Programming Model
› Function as a Service Platforms

» BabelMR
› Programming Interface
› System Architecture
› Microbenchmarks of Function Containers and Filesystems

» Evaluation
› BabelMR Building Blocks
› Systems Comparison

4

BabelMR @ SDA 2023

The MapReduce Programming Model

» Inspired by functional programming

» Higher order functions (map, reduce, …) call
user-defined lower order functions

» All functions are side effect free

» Simple parallelization model for arbitrary computations

5

f()

Shuffle & Sort

f()

unpartitioned input files

unpartitioned intermediate files

partitioned output files

partitioned intermediate files

f() f()

mappers

reducers

BabelMR @ SDA 2023

The MapReduce Programming Model

» Inspired by functional programming

» Higher order functions (map, reduce, …) call
user-defined lower order functions

» All functions are side effect free

» Simple parallelization model for arbitrary computations

5

f()

Shuffle & Sort

f()

unpartitioned input files

unpartitioned intermediate files

partitioned output files

partitioned intermediate files

f() f()

mappers

reducers
”The user just has to setup the cluster”

BabelMR @ SDA 2023

The MapReduce Programming Model

» Inspired by functional programming

» Higher order functions (map, reduce, …) call
user-defined lower order functions

» All functions are side effect free

» Simple parallelization model for arbitrary computations

5

f()

Shuffle & Sort

f()

unpartitioned input files

unpartitioned intermediate files

partitioned output files

partitioned intermediate files

f() f()

mappers

reducers
”The user just has to setup the cluster”

Instance type? Cluster size? Pricing model?

BabelMR @ SDA 2023

Function as a Service Platforms

» Users write pieces of code, packaged as ZIP or container image
› Much like map functions in MapReduce
› Image may contain entire operating system user space

» Providers transparently schedule, load balance, and scale user code
› Operational simplicity

» Can startup thousands of small compute units in milliseconds
› Elastic scalability

6

Source: AWS

Source: Azure
Source: Google

BabelMR @ SDA 2023

Serverless Data Analytics

» Exploit benefits of FaaS platforms
while working around limitations

» Efficient batch-start of many functions

» Efficient I/O to serverless storage services

» Cost-efficient staged shuffle

» Mitigation of straggling service requests

» …

7

BabelMR @ SDA 2023

Serverless Data Analytics

» Exploit benefits of FaaS platforms
while working around limitations

» Efficient batch-start of many functions

» Efficient I/O to serverless storage services

» Cost-efficient staged shuffle

» Mitigation of straggling service requests

» …

7

λ λ λ

λ λ

λ

λ

unpartitioned S3 objects

partitioned S3 objects

pre-aggregated S3 objects

aggregated S3 objects

Blueprint System Architecture

BabelMR @ SDA 2023

Systems for Simplified Data Analytics

8

Operational Simplicity

Fl
ex

ib
ili

ty

Hadoop
Streaming

Hadoop / Spark / Flink

Database UDFs

BabelMR

PyWren / Lambada / PySpark

Starling / Athena

BabelMR @ SDA 2023

BabelMR Programming Interface

» BabelMR application
› Container images for batched map and reduce functions
› Cloud storage locations for inputs and outputs
› Key-value attributes

» BabelMR engine
› User images contain layer with BabelMR engine
› Engine integrates with cloud storage and file formats
› Custom Lambda runtime orchestrates interaction

9

Base OS Container Image

BabelMR Application

BabelMR Engine & Runtime

BabelMR @ SDA 2023

BabelMR System Architecture

10

User Code

M
ap

 S
ta

ge

Map

R
ed

uc
e

St
ag

e

Reduce

λ λ λ

λ λ

λ

λ

unpartitioned S3 objects

partitioned S3 objects

pre-aggregated S3 objects

aggregated S3 objects

BabelMR @ SDA 2023

BabelMR System Architecture

10

User Code

M
ap

 S
ta

ge

Map

R
ed

uc
e

St
ag

e

Reduce

λ λ λ

λ λ

λ

λ

unpartitioned S3 objects

partitioned S3 objects

pre-aggregated S3 objects

aggregated S3 objects

BabelMR @ SDA 2023

BabelMR System Architecture

10

User Code Local Ephemeral Filesystem

M
ap

 S
ta

ge

Import Map Export

ou
t.c

sv

in.csv

R
ed

uc
e

St
ag

e

Import Reduce Export

in.csv

ou
t.c

sv

λ λ λ

λ λ

λ

λ

unpartitioned S3 objects

partitioned S3 objects

pre-aggregated S3 objects

aggregated S3 objects

BabelMR @ SDA 2023

BabelMR System Architecture

10

Shared Object StorageUser CodeBabelMR Local Ephemeral Filesystem

M
ap

 S
ta

ge

Export

Import Map Export

Import map0.parquetRepartition Export

ou
t.c

sv

in.csv

Import 0.parquet

R
ed

uc
e

St
ag

e Import Export

Import Reduce Export

reduce0.parquetImport Export
map0.parquet
map1.parquet

...

in.csv

ou
t.c

sv

λ λ λ

λ λ

λ

λ

unpartitioned S3 objects

partitioned S3 objects

pre-aggregated S3 objects

aggregated S3 objects

BabelMR @ SDA 2023

Elasticity of Container-based Functions

11

Container Startup Times

BabelMR @ SDA 2023

Elasticity of Container-based Functions

11

Container Startup Times

BabelMR @ SDA 2023

Efficiency of Function Filesystems

12

Filesystem Performance

BabelMR @ SDA 2023

Efficiency of Function Filesystems

12

Filesystem Performance

BabelMR @ SDA 2023

Evaluation of Building Blocks

» Workload and data
› TPC-H Q1 and TPCx-BB Q1 written in best effort C#, Go, and Python
› Data at scale factors (sf) 1, 10, 100, and 1000 stored in #sf files, formatted in Parquet and CSV

» BabelMR system setup and configurations
› AWS services: Lambda, EC2, S3
› Lambda-based workers with 5,120 MB RAM and 512 MB SSD (between 1 - #sf)
› EC2-based coordinator with 8 vCPUs and 16 GB RAM (c5.2xlarge)
› All custom code, system-side shuffle, BabelMR scan and shuffle

» Runtimes averaged over 10 warm runs

» Measured from May to July 2023 in AWS region us-east-1 for ~$1,500
13

BabelMR @ SDA 2023

Building Blocks improve Execution Efficiency

14

Ru
nt

im
e

(s
ec

on
ds

)

Scale Factor

Runtimes for TPCx-BB Q1 in C#

BabelMR @ SDA 2023

Building Blocks improve Execution Efficiency

14

Ru
nt

im
e

(s
ec

on
ds

)

Scale Factor

Runtimes for TPCx-BB Q1 in C#
Runtime Breakdown per Function

BabelMR @ SDA 2023

End-to-End Evaluation

» Setup for serverless systems Corral, PyWren, and BabelMR
› AWS services: Lambda, EC2, S3
› Lambda-based workers with 5,120 MB RAM and 512 MB SSD (between 1 - #sf)
› EC2-based coordinator with 8 vCPUs and 16 GB RAM (c5.2xlarge)

» PySpark setup
› AWS EMR 6.11
› EMR used 1, 4, 40, and 400 workers with 16 vCPUs and 32 GB RAM
› Elastic and static clusters

» Ray setup
› AWS Glue 4.0
› Glue used Z.2x machines with equivalent amount of resources
› Only elastic clusters

15

BabelMR @ SDA 2023

System Performance Comparison

16

1 10 100 1000
0

200

400

Scale Factor

R
u
nt
im

e
(s
ec
on

d
s)

BabelMR (Go) PyWren (Python)
BabelMR (Python) PySpark - Elastic Cluster

Corral (Go) PySpark - Static Cluster

Ray (Python)

Runtimes for TPC-H Q1

BabelMR @ SDA 2023

System Performance Comparison

16

1 10 100 1000
0

200

400

Scale Factor

R
u
nt
im

e
(s
ec
on

d
s)

BabelMR (Go) PyWren (Python)
BabelMR (Python) PySpark - Elastic Cluster

Corral (Go) PySpark - Static Cluster

Ray (Python)

Runtimes for TPC-H Q1

BabelMR @ SDA 2023

System Performance Comparison

16

1 10 100 1000
0

200

400

Scale Factor

R
u
nt
im

e
(s
ec
on

d
s)

BabelMR (Go) PyWren (Python)
BabelMR (Python) PySpark - Elastic Cluster

Corral (Go) PySpark - Static Cluster

Ray (Python)

Runtimes for TPC-H Q1

BabelMR @ SDA 2023

System Performance Comparison

16

1 10 100 1000
0

200

400

Scale Factor

R
u
nt
im

e
(s
ec
on

d
s)

BabelMR (Go) PyWren (Python)
BabelMR (Python) PySpark - Elastic Cluster

Corral (Go) PySpark - Static Cluster

Ray (Python)

Runtimes for TPC-H Q1

BabelMR @ SDA 2023

System Performance Comparison

16

1 10 100 1000
0

200

400

Scale Factor

R
u
nt
im

e
(s
ec
on

d
s)

BabelMR (Go) PyWren (Python)
BabelMR (Python) PySpark - Elastic Cluster

Corral (Go) PySpark - Static Cluster

Ray (Python)

Runtimes for TPC-H Q1

BabelMR @ SDA 2023

System Performance Comparison

16

1 10 100 1000
0

200

400

Scale Factor

R
u
nt
im

e
(s
ec
on

d
s)

BabelMR (Go) PyWren (Python)
BabelMR (Python) PySpark - Elastic Cluster

Corral (Go) PySpark - Static Cluster

Ray (Python)

Runtimes for TPC-H Q1

BabelMR @ SDA 2023

BabelMR Summary

17

Wraps arbitrary containers
to maximize flexibility

Exposes MapReduce model
to simplify parallel execution

Builds on serverless infrastructure
to simplify cluster management

Performs as state-of-the-art
serverless systems

BabelMR @ SDA 2023

BabelMR Summary

17

Wraps arbitrary containers
to maximize flexibility

Exposes MapReduce model
to simplify parallel execution

Builds on serverless infrastructure
to simplify cluster management

Performs as state-of-the-art
serverless systems

https://github.com/hpides/
babelmr-applications

https://github.com/hpides/babelmr-applications
https://github.com/hpides/babelmr-applications

