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You are a data professional

» Build and run a complex data pipeline at scale

» Requirements:
1. Pipeline stages in different languages, environments, and data engines
2. Enable distributed data-parallel execution
3. Operate underlying infrastructure

» What do you do with little expertise in… ?
1. Porting applications to distributed computing frameworks
2. Distributed and parallel data processing
3. Cluster management
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BabelMR: A Serverless System for Arbitrary 
Containerized MapReduce Applications

» Wraps arbitrary containerized applications to maximize portability
› Applications are black boxes to the system

» Exposes MapReduce programming model to simplify data-parallel execution
› Pragmatic choice over richer models

» Builds on serverless infrastructure to simplify cluster management
› Current commercial public clouds (AWS, Azure, GCP, …)

3



BabelMR @ SDA 2023

Agenda

» Primer
› The MapReduce Programming Model
› Function as a Service Platforms

» BabelMR
› Programming Interface
› System Architecture
› Microbenchmarks of Function Containers and Filesystems

» Evaluation
› BabelMR Building Blocks
› Systems Comparison
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The MapReduce Programming Model

» Inspired by functional programming

» Higher order functions (map, reduce, …) call
user-defined lower order functions

» All functions are side effect free

» Simple parallelization model for arbitrary computations
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Function as a Service Platforms

» Users write pieces of code, packaged as ZIP or container image
› Much like map functions in MapReduce
› Image may contain entire operating system user space

» Providers transparently schedule, load balance, and scale user code
› Operational simplicity

» Can startup thousands of small compute units in milliseconds
› Elastic scalability
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Serverless Data Analytics

» Exploit benefits of FaaS platforms
while working around limitations

» Efficient batch-start of many functions

» Efficient I/O to serverless storage services

» Cost-efficient staged shuffle

» Mitigation of straggling service requests

» …
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Systems for Simplified Data Analytics
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BabelMR Programming Interface

» BabelMR application
› Container images for batched map and reduce functions
› Cloud storage locations for inputs and outputs
› Key-value attributes

» BabelMR engine
› User images contain layer with BabelMR engine
› Engine integrates with cloud storage and file formats
› Custom Lambda runtime orchestrates interaction
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BabelMR System Architecture
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BabelMR System Architecture
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BabelMR System Architecture
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Elasticity of Container-based Functions
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Efficiency of Function Filesystems
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Evaluation of Building Blocks

» Workload and data
› TPC-H Q1 and TPCx-BB Q1 written in best effort C#, Go, and Python
› Data at scale factors (sf) 1, 10, 100, and 1000 stored in #sf files, formatted in Parquet and CSV

» BabelMR system setup and configurations
› AWS services: Lambda, EC2, S3
› Lambda-based workers with 5,120 MB RAM and 512 MB SSD (between 1 - #sf)
› EC2-based coordinator with 8 vCPUs and 16 GB RAM (c5.2xlarge)
› All custom code, system-side shuffle, BabelMR scan and shuffle

» Runtimes averaged over 10 warm runs

» Measured from May to July 2023 in AWS region us-east-1 for ~$1,500
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Building Blocks improve Execution Efficiency
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End-to-End Evaluation

» Setup for serverless systems Corral, PyWren, and BabelMR
› AWS services: Lambda, EC2, S3
› Lambda-based workers with 5,120 MB RAM and 512 MB SSD (between 1 - #sf)
› EC2-based coordinator with 8 vCPUs and 16 GB RAM (c5.2xlarge)

» PySpark setup
› AWS EMR 6.11
› EMR used 1, 4, 40, and 400 workers with 16 vCPUs and 32 GB RAM
› Elastic and static clusters

» Ray setup
› AWS Glue 4.0
› Glue used Z.2x machines with equivalent amount of resources
› Only elastic clusters
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System Performance Comparison
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BabelMR Summary
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