DES K paTA Hasso
ENGINEERING Plattner
SYSTEMS GROUP Institut

BabelMR: A Polyglot Framework
for Serverless MapReduce

Fabian Mahling, Paul R63ler, Thomas Bodner, Tilmann Rabl
thomas.bodner@hpi.de

SDA Workshop | 1 September 2023

mailto:thomas.bodner@hpi.de

You are a data professional

» Build and run a complex data pipeline at scale

» Requirements:
1. Pipeline stages in different languages, environments, and data engines
2. Enable distributed data-parallel execution
3. Operate underlying infrastructure

» What do you do with little expertise in... ?
1. Porting applications to distributed computing frameworks
2. Distributed and parallel data processing
3. Cluster management

BabelMR @ SDA 2023 2

BabelMR: A Serverless System for Arbitrary
Containerized MapReduce Applications

» Wraps arbitrary containerized applications to maximize portability

» Applications are black boxes to the system

» Exposes MapReduce programming model to simplify data-parallel execution

» Pragmatic choice over richer models

» Builds on serverless infrastructure to simplify cluster management

» Current commercial public clouds (AWS, Azure, GCP, ...)

BabelMR @ SDA 2023 3

Agenda

» Primer
> The MapReduce Programming Model
» Function as a Service Platforms

» BabelMR

» Programming Interface
» System Architecture
» Microbenchmarks of Function Containers and Filesystems

» Evaluation

> BabelMR Building Blocks
» Systems Comparison

BabelMR @ SDA 2023 4

Dl;s ﬂ

The MapReduce Programming Model

1]
» Inspired by functional programming unpartitioned input files

N S A

» Higher order functions (map, reduce, ...) call f) mappers > ()

user-defined lower order functions | - | -) - v

unplartiltioned lintermediTtelfiles

» All functions are side effect free NV v/

Shuffle & Sort

» Simple parallelization model for arbitrary computations

A A
LTI TTTrl Il

partitioned intermediate files

f() reducers f()

A

A A
[] [

partitioned output files

L1 LL
BabelMR @ SDA 2023 5

Dl;s ﬂ

The MapReduce Programming Model

1]
» Inspired by functional programming unpartitioned input files

N S A

» Higher order functions (map, reduce, ...) call f) mappers > ()

user-defined lower order functions | - | -) - v

unplartiltioned lintermediTtelfiles

» All functions are side effect free NV v/

Shuffle & Sort

» Simple parallelization model for arbitrary computations

A A
LTI TTTrl Il

partitioned intermediate files

”The user just has to setup the cluster” 0 0
reducers

A

A A
[] [

partitioned output files

L1 LL
BabelMR @ SDA 2023 5

Dl;s ﬂ

The MapReduce Programming Model

1]
» Inspired by functional programming unpartitioned input files

N S A

» Higher order functions (map, reduce, ...) call f) mappers > ()

user-defined lower order functions | - | -) - v

unplartiltioned lintermediTtelfiles

» All functions are side effect free NV v/

Shuffle & Sort

» Simple parallelization model for arbitrary computations

A A
LTI TTTrl Il

partitioned intermediate files

”The user just has to setup the cluster” 0 0
reducers

Instance type? Cluster size? Pricing model?

A

A A
[] [

partitioned output files

L1 LL
BabelMR @ SDA 2023 5

DE['\!I'JS “

Function as a Service Platforms

» Users write pieces of code, packaged as ZIP or container image
> Much like map functions in MapReduce
» Image may contain entire operating system user space

» Providers transparently schedule, load balance, and scale user code |_-\\-_'

» Operational simplicity

Source: AWS

» Can startup thousands of small compute units in milliseconds

» Elastic scalability

Source: Azure
Source: Google

BabelMR @ SDA 2023 6

DES

Starling: A Scalable Query Engine on Cloud Functions

° Matthew Perron Raul Castro Fernandez
MIT CSAIL University of Chicago
e rv e r e S S a a n a y I C S mperron@csail. mit.edu raulcf@uchicago.edu
David DeWitt Samuel Madden
MIT CSAIL i K
david dewitt@outloo Occupy the Cloud: Distributed Computing for the 99%

ABSTRACT _—
i X Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, Benjamin Recht
Much like on-premises systems, the nat

. . . e s
5 N N University of California, Berkele:
» Exploit benefits of FaasS platforms s s e prag i !
% cluster o nods toruia datubaselinstal {jonas, gifan, shivaram, istoica, brecht} @eecs.berkeley.edu
. alytics workloads are often bursty or lo ABSTRACT target on-premise installations at large scale. On commercial cloud
Distributed computing remains inaccessible to a large number of Platforms, a novice user confronts a dizzying array of potential deci-
users, in spite of many open source platforms and extensive com- Sions: one must ahead of time decide on instance type, cluster size,

mercial offerings. While distributed computation frameworks have pricing model, programming model, and task granularity,

that the

rkloads

Lambada: Interactive Data Analytics racine
on Cold Data Using Serverless Cloud Infrastructure

b-reduce

A
'

Efficient batch-start of many functions

Ingo Miiller Renato Marroquin Gustavo Alonso
ingo.mueller@inf.ethz.ch marenato@inf.ethz.ch alonso@inf.ethz.ch
ETH Zurich ETH Zurich ETH Zurich
ABSTRACT - Faas 0 taas - 13VMs(s) —- aas (s
o o . o —— TWis(WMe) — Faas (53)
» Eff I C I e n t I / O t O S e rv e rI e S S St O r a g e S e er C e S Serverless computing has recently attracted a lot of attention " 3 Vs ORAM)
from research and industry due to its promise of ultimate elas- . o =S
ticity and operational simplicity. However, there is no consen- I TS e 2 e
sus yet on whether or not the approach is suitable for data pro- TS | S P
cessing. In this paper, we present Lambada, a serverless dis- € H
tributed data processing framework designed to explore how 20 Sl
to perform data analytics on serverless computing, In our anal- T T T e

» C 0 St_ eff i Ci en t St a g e d S h uf.ﬂ e ysis, supported with extensive experiments, we show in which P o Queres pe hour
» Mitigation of straggling service requests

)) eeoe

BabelMR @ SDA 2023 7

Serverless Data Analytics enpriione 1 s

A A A A

» Exploit benefits of FaasS platforms
while working around limitations)

A A
[TTTT TTTT]
partitioned S3 objects|

A
'

Efficient batch-start of many functions

A A
» Efficient 1/O to serverless storage services e -
pre-aggregated S3 objects
» Cost-efficient staged shuffle e
A

» Mitigation of straggling service requests -

aggregelzttl-zdl T3l objects
" e Blueprint System Architecture

BabelMR @ SDA 2023 7

Systems for Simplified Data Analytics

BabelMR @ SDA 2023

A

Flexibility

BabelMR
° o
Hadoop
St i
reaming PyWren [Lambada / PySpark
° (-

Hadoop / Spark [Flink
Starling / Athena
o o
Database UDFs

Operational Simplicity

BabelMR Programming Interface

» BabelMR application
» Container images for batched map and reduce functions
» Cloud storage locations for inputs and outputs
» Key-value attributes

» BabelMR engine

» User images contain layer with BabelMR engine
» Engine integrates with cloud storage and file formats
» Custom Lambda runtime orchestrates interaction

BabelMR @ SDA 2023

BabelMR Engine & Runtime

BabelMR Application

Base OS Container Image

DE['\!I'JS “

BabelMR System Architecture

[[[
unpartitioned S3 objects
o |
(o]
©
» ANLLA A]] A
o
s ,
v v v
- i, i
partitioned S3 objects
Lo Lot
A A
(2]
(o]
1]
e i - A
e 1Tl Ml
8 “ pre-aggregated S3 objects
=] h\\" -~
©
A
- aggregated S3 objects
LLLL]

BabelMR @ SDA 2023 10

DE"iI-rJS “

BabelMR System Architecture

[[[
unpartitioned S3 objects
o |
o)
©
» ANLLA A]] A
o
s .
v v v
- i, i
partitioned S3 objects
Loy el
A A
()
o)
©
- A
e T Ml
8 “ pre-aggregated S3 objects
= h\\" <
°
A

- aggregated S3 objects
LI

BabelMR @ SDA 2023 10

DEl\!rjs ﬂ

BabelMR System Architecture

[[[

unpartitioned S3 objects
P |
(o]
©
» AL A
o1
©
E A A A

partitioned S3 objects

Loy el

A A
(]
(o]
©
e A
e T Ml
8 “ pre-aggregated S3 objects
35 Ses
©
&

A

- Local Ephemeral Filesystem aggregated $3 objects
LLLL]

BabelMR @ SDA 2023 10

DES ?

BabelMR System Architecture

0.parquet

unpartitioned S3 objects
map0.parquet | | [
S A A
A A A A

partitioned S3 objects
L L

.CSV

out

Map Stage
ASO"Ul

map0.parquet A A
map1.parquet reduce0.parquet -
N v

A
[TT1 [TTT
pre-aggregated S3 objects|

.5.
(2]
]

i i} § vt

>
n
o -
=
5
o

Reduce Stage

A

A

- - Shared Object Storage Local Ephemeral Filesystem aggregmgobjects
LI

BabelMR @ SDA 2023 10

Elasticity of Container-based Functions

BabelMR @ SDA 2023

[Zip S3[1 Zip Direct BB Image ECR

—_
()
—

—_

(=]
o
|

Duration (seconds)

E

O O O O O O O O O O
- — N N LN

S O O O O
N N - - N n O O O O
AN mn O O O
. — N <
Package Size (MB)

Container Startup Times

11

Elasticity of Container-based Functions

BabelMR @ SDA 2023

[Zip S3[1 Zip Direct BB Image ECR

—_
()
—

—_
(=]
o
\
\
|

Duration (seconds)

=

O O O O O O O O O O O O O O O
— — AN NN < TN NN OO o O
AN mn O O O
. — N <

Package Size (MB)

Container Startup Times

11

Efficiency of Function Filesystems

1 Write] Read 8 Maximum Memory Usage

104 — —4
Q 2
))
> o
= 10% - 5
2 -
< >
> (@]
o €
< 102 — 0
= =

128 256 512 1024 2048 4096

Lambda Function Memory Size (MB)

Filesystem Performance

BabelMR @ SDA 2023

12

Efficiency of Function Filesystems

1 Write] Read 8 Maximum Memory Usage

10* — —4
@ 2
g -3 L

Q
= 103 — &
=] [75]
= -2 2
S0 -
: :
c 2 _ -1
£ 10 g

128 256 512 1024 2048 4096
Lambda Function Memory Size (MB)

Filesystem Performance

BabelMR @ SDA 2023

12

Dl;s ﬂ

Evaluation of Building Blocks

» Workload and data
» TPC-H Q1 and TPCx-BB Q1 written in best effort C#, Go, and Python
» Data at scale factors (sf) 1, 10, 100, and 1000 stored in #sf files, formatted in Parquet and CSV

» BabelMR system setup and configurations
> AWS services: Lambda, EC2, S3
» Lambda-based workers with 5,120 MB RAM and 512 MB SSD (between 1 - #sf)
» EC2-based coordinator with 8 vCPUs and 16 GB RAM (c5.2xlarge)
» All custom code, system-side shuffle, BabelMR scan and shuffle

» Runtimes averaged over 10 warm runs

» Measured from May to July 2023 in AWS region us-east-1 for ~$1,500

BabelMR @ SDA 2023 13

D: :\:;ES H

Building Blocks improve Execution Efficiency

[BabelMR [System-side Shuffle [All Custom

100 —

(SN
]
\

Runtime (seconds)

[[[I
1 10 100 1000

Scale Factor

Runtimes for TPCx-BB Q1 in (#

BabelMR @ SDA 2023 14

DI;S ﬂ

Building Blocks improve Execution Efficiency

BabelMR Engine User Code

[BabelMR [System-side Shuffle I All Custom All Custom
100 — o T T T
~~ Q
0 = -
g b System-side Shuffle
o £
: 5
o 50 — b=
.g E T T T T
L
5 == BabelMR
) e [m |
0 | ! { 1
1 10 100 1000 ‘ ‘ | | | |
Scale Factor 0 5 10 15 20 25

Runtime (seconds)

Runtimes for TPCx-BB Q1 in (#
Runtime Breakdown per Function

BabelMR @ SDA 2023 14

End-to-End Evaluation

» Setup for serverless systems Corral, PyWren, and BabelMR
> AWS services: Lambda, EC2, S3
» Lambda-based workers with 5,120 MB RAM and 512 MB SSD (between 1 - #sf)
» EC2-based coordinator with 8 vCPUs and 16 GB RAM (c5.2xlarge)

» PySpark setup
> AWS EMR 6.11
» EMR used 1, 4, 40, and 400 workers with 16 vCPUs and 32 GB RAM
» Elastic and static clusters

» Ray setup
» AWS Glue 4.0
» Glue used Z.2x machines with equivalent amount of resources
» Only elastic clusters

BabelMR @ SDA 2023 15

System Performance Comparison

BabelMR @ SDA 2023

3 BabelMR (Go) E PyWren (Python)

3 BabelMR (Python) m= PySpark - Elastic Cluster
—Corral (Go) I PySpark - Static Cluster
= Ray (Python)

L

Scale Factor

Runtimes for TPC-H Q1

Runtime (seconds)

1000

16

System Performance Comparison

BabelMR @ SDA 2023

3 BabelMR (Go) E PyWren (Python)

3 BabelMR (Python) m= PySpark - Elastic Cluster
—Corral (Go) I PySpark - Static Cluster
= Ray (Python)

400 —

200 —

Runtime (seconds)

1 10 100 1000
Scale Factor

Runtimes for TPC-H Q1

16

System Performance Comparison

BabelMR @ SDA 2023

3 BabelMR (Go) E PyWren (Python)

3 BabelMR (Python) m= PySpark - Elastic Cluster
—Corral (Go) I PySpark - Static Cluster
= Ray (Python)

L

Scale Factor

Runtimes for TPC-H Q1

Runtime (seconds)

1000

16

System Performance Comparison

BabelMR @ SDA 2023

3 BabelMR (Go) E PyWren (Python)

3 BabelMR (Python) m= PySpark - Elastic Cluster
—Corral (Go) I PySpark - Static Cluster
= Ray (Python)

)

Scale Factor

Runtimes for TPC-H Q1

Runtime (seconds)

1000

16

System Performance Comparison

BabelMR @ SDA 2023

3 BabelMR (Go) E PyWren (Python)

3 BabelMR (Python) m= PySpark - Elastic Cluster
—Corral (Go) I PySpark - Static Cluster
= Ray (Python)

L

Scale Factor

Runtimes for TPC-H Q1

Runtime (seconds)

1000

16

System Performance Comparison

BabelMR @ SDA 2023

3 BabelMR (Go) E PyWren (Python)

3 BabelMR (Python) m= PySpark - Elastic Cluster
—Corral (Go) I PySpark - Static Cluster
= Ray (Python)

400 —

200 —

Runtime (seconds)

o
\

1 10 100 1000
Scale Factor

Runtimes for TPC-H Q1

16

BabelMR Summary

@5 ﬂ

BabelMR Programming Interface

» BabelMR application
» Container images for map and reduce functions
» Cloud storage locations for inputs and outputs
) Key-value attributes

BabelMR Engine & Runtime

. BabelMR Application
» BabelMR engine

» Userimages contain layer with BabelMR engine Base 05 Container Image
» Engine integrates with cloud storage and file formats
» Custom Lambda runtime orchestrates interaction

BabelMR @ SDA2023 1

Wraps arbitrary containers
to maximize flexibility

@S ﬂ

Function as a Service Platforms

» Users write pieces of code, packaged as ZIP or container image
> Much ke map functions in MapReduce

» Providers transparently schedule, load balance, and scale user code
» Operational simplicity

» Startup thousands of small compute units in milliseconds &
) Elastic scalability
Source: AWS
» Bill at 1ms granularity that user code runs

> Cost efficiency for sporadic usage @
Source: Google

Source: Azure
BabelMR @ SDA 2023 14

Builds on serverless infrastructure

BabelMR @ SDA 2023 to simplify cluster management

DES

The MapReduce Programming Model
» Inspired by functional programming

» Higher order functions (map, reduce, ...) call
user-defined lower order functions

» All functions are side effect free

» Simple parallelization model for arbitrary computations ‘ l ﬁ r
fa
™

”The user just has to setup the cluster”

BabelVIR @ SDA 2023

Shuffle & Sort
Y
T * i

1
o i fes

TIT1
44
[e]

Exposes MapReduce model
to simplify parallel execution

System Performance Comparison

EBabelMR (Go) N PyWren (Python)

= BabelMR (Python) B3 PySpark - Elastic Cluster
=3 Corral (Go) =Py Spark - Static Cluster
== Ray (Python)

Runtime (seconds)
- 8

1 10 100 1000
Scale Factor

Runtimes for TPC-H Q1

BabelMR @ SDA2023

& H
A \?

Performs as state-of-the-art
serverless systems

17

BabelMR Summary

https://github.com/hpides/
babelmr-applications

BabelMR @ SDA 2023 17

https://github.com/hpides/babelmr-applications
https://github.com/hpides/babelmr-applications

