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You are a data professional

» Build and run a complex data pipeline at scale

» Requirements:
1. Pipeline stages in different languages, environments, and data engines
2. Enable distributed data-parallel execution
3. Operate underlying infrastructure

» What do you do with little expertise in... ?
1. Porting applications to distributed computing frameworks
2. Distributed and parallel data processing
3. Cluster management
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BabelMR: A Serverless System for Arbitrary
Containerized MapReduce Applications

» Wraps arbitrary containerized applications to maximize portability

» Applications are black boxes to the system

» Exposes MapReduce programming model to simplify data-parallel execution

» Pragmatic choice over richer models

» Builds on serverless infrastructure to simplify cluster management

» Current commercial public clouds (AWS, Azure, GCP, ...)
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Agenda

» Primer
> The MapReduce Programming Model
» Function as a Service Platforms

» BabelMR

» Programming Interface
» System Architecture
» Microbenchmarks of Function Containers and Filesystems

» Evaluation

> BabelMR Building Blocks
» Systems Comparison
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Function as a Service Platforms

» Users write pieces of code, packaged as ZIP or container image
> Much like map functions in MapReduce
» Image may contain entire operating system user space

» Providers transparently schedule, load balance, and scale user code |_-\\-_'

» Operational simplicity

Source: AWS

» Can startup thousands of small compute units in milliseconds

» Elastic scalability

Source: Azure
Source: Google
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Systems for Simplified Data Analytics
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BabelMR Programming Interface

» BabelMR application
» Container images for batched map and reduce functions
» Cloud storage locations for inputs and outputs
» Key-value attributes

» BabelMR engine

» User images contain layer with BabelMR engine
» Engine integrates with cloud storage and file formats
» Custom Lambda runtime orchestrates interaction
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BabelMR System Architecture
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BabelMR System Architecture
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BabelMR System Architecture

0.parquet

unpartitioned S3 objects
map0.parquet | | [
S A A
A A A A

partitioned S3 objects
L L

.CSV

out

Map Stage
ASO"Ul

map0.parquet A A
map1.parquet reduce0.parquet -
N v

A
[TT1 [TTT
pre-aggregated S3 objects|

.5.
(2]
]

i i} § vt

>
n
o -
=
5
o

Reduce Stage

A

A

- - Shared Object Storage Local Ephemeral Filesystem aggregmgobjects
LI

BabelMR @ SDA 2023 10



Elasticity of Container-based Functions
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Elasticity of Container-based Functions
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Efficiency of Function Filesystems
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Evaluation of Building Blocks

» Workload and data
» TPC-H Q1 and TPCx-BB Q1 written in best effort C#, Go, and Python
» Data at scale factors (sf) 1, 10, 100, and 1000 stored in #sf files, formatted in Parquet and CSV

» BabelMR system setup and configurations
> AWS services: Lambda, EC2, S3
» Lambda-based workers with 5,120 MB RAM and 512 MB SSD (between 1 - #sf)
» EC2-based coordinator with 8 vCPUs and 16 GB RAM (c5.2xlarge)
» All custom code, system-side shuffle, BabelMR scan and shuffle

» Runtimes averaged over 10 warm runs

» Measured from May to July 2023 in AWS region us-east-1 for ~$1,500
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Building Blocks improve Execution Efficiency
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Building Blocks improve Execution Efficiency
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End-to-End Evaluation

» Setup for serverless systems Corral, PyWren, and BabelMR
> AWS services: Lambda, EC2, S3
» Lambda-based workers with 5,120 MB RAM and 512 MB SSD (between 1 - #sf)
» EC2-based coordinator with 8 vCPUs and 16 GB RAM (c5.2xlarge)

» PySpark setup
> AWS EMR 6.11
» EMR used 1, 4, 40, and 400 workers with 16 vCPUs and 32 GB RAM
» Elastic and static clusters

» Ray setup
» AWS Glue 4.0
» Glue used Z.2x machines with equivalent amount of resources
» Only elastic clusters
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System Performance Comparison
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BabelMR Summary
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BabelMR Programming Interface

» BabelMR application
» Container images for map and reduce functions
» Cloud storage locations for inputs and outputs
) Key-value attributes

BabelMR Engine & Runtime

. BabelMR Application
» BabelMR engine

» Userimages contain layer with BabelMR engine Base 05 Container Image
» Engine integrates with cloud storage and file formats
» Custom Lambda runtime orchestrates interaction
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Wraps arbitrary containers
to maximize flexibility
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Function as a Service Platforms

» Users write pieces of code, packaged as ZIP or container image
> Much ke map functions in MapReduce

» Providers transparently schedule, load balance, and scale user code
» Operational simplicity

» Startup thousands of small compute units in milliseconds &
) Elastic scalability
Source: AWS
» Bill at 1ms granularity that user code runs

> Cost efficiency for sporadic usage @
Source: Google

Source: Azure
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Builds on serverless infrastructure

BabelMR @ SDA 2023 to simplify cluster management
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The MapReduce Programming Model
» Inspired by functional programming

» Higher order functions (map, reduce, ...) call
user-defined lower order functions

» All functions are side effect free

» Simple parallelization model for arbitrary computations ‘ l ﬁ r
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”The user just has to setup the cluster”
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BabelMR Summary

https://github.com/hpides/
babelmr-applications
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