
The promise and the reality of 
serverless

Gustavo Alonso

Systems Group

Department of Computer Science

ETH Zurich, Switzerland



Some background

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich 2



The promise

3

https://cacm.acm.org/magazines/2021/5/25217
9-what-serverless-computing-is-and-should-
become/fulltext

What Serverless Computing Is and Should Become
CACM’21

Slide courtesy of Ana Klimovic (ETH Zurich)

https://cacm.acm.org/magazines/2021/5/252179-what-serverless-computing-is-and-should-become/fulltext


The reality

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich 4



The business case

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich 5



Understanding serverless

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich 6



Some data

7

Serverless in the Wild
USENIX ATC’20

https://www.usenix.org/system/files/atc20-shahrad.pdf

Slide courtesy of Ana Klimovic (ETH Zurich)

https://www.usenix.org/system/files/atc20-shahrad.pdf


FaaS function characteristics

8

• Short-lived (up to ~15 minutes)
• Example from Azure Functions:

Slide courtesy of Ana Klimovic (ETH Zurich)



FaaS function characteristics

9

• Skewed invocation frequency
• Example from Azure functions



FaaS function characteristics

10

• Short-lived (up to ~15 minutes)

• Small resource footprint (e.g., up to 3GB RAM)

• Skewed invocation frequency

• Stateless

Slide courtesy of Ana Klimovic (ETH Zurich)



Provider side

• Scheduling at this granularity is a potential challenge: many functions 
with a short lifetime (15 minutes) that need to be allocated

• Start up time becomes a problem because the functions typically run 
for a short time (in milliseconds): keep functions warm, reserve 
containers, etc.

• Not compete with other deployment forms (compute time in 
serverless much more expensive than in VMs, creates market for 
short lived computations but makes no sense for services running 
continuously)

Cloud Computing Architecture (D-INFK, ETHZ) - Cloud as a 
Service

11



The question that needs to be asked

Does it even make sense to run data 
analytics on current serverless 

infrastructure?

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich 12



Data Analytics

• Heavy queries

• Not necessarily repetitive (use case dependent)

• Lots of data involved

• Potentially heavy algorithms (e.g., out of core sorting)

• Scatter-gather patterns very common

• …

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich 13



Speeding data analytics in the cloud

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich 14



Useful things that can be done …

• Functions can be used to extend an engine

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich 15



Useful things that can be done

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich 16



Advancing serverless

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich 17



Serverless can be done better

• Current offerings are bound to legacy systems

• Many spurious constraints
• Technical constrains => stateless

• Business case constraints => pricing

• Resource constraints => memory allocation

• Cloud provider vs cloud user constraints => what problem are we solving?

• From a research perspective, we should not ignore reality, but we 
should not let spurious constraints dominate the agenda

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich 18



Two ideas from our own research

• Redesign the stack => Dandelion

• Enable networking => Boxer (and see presentation later)

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich 19



System software

Virtual 
Machine

Application
Layer

System
Layer

The cloud stack today

Hardware
Layer

CPU

Storage
Network 
interface

Memory

Virtual 
MachineVirtual 
Machine

Slide courtesy of Ana Klimovic (ETH Zurich)



System software

Application
Layer

System
Layer

Current approach: re-use existing system software

Hardware
Layer

λ λ λ λ λ λ λ λ

CPU

Smart
Network 
Interface

Memory

G
P
U

F
P 
G
A

T
P
U

Storage

Run functions in virtual 
machines for secure isolation

Orchestrate functions with 
traditional cluster manager

Slide courtesy of Ana Klimovic (ETH Zurich)



System software

Application
Layer

System
Layer

Current approach has several key problems

Hardware
Layer

λ λ λ λ λ λ λ λ

CPU

Smart
Network 
Interface

Memory

G
P
U

F
P 
G
A

T
P
U

Storage

❌ high latency to boot functions

❌ high memory overhead 

❌ cluster manager becomes bottleneck at high load

❌ limited scheduling optimizations as function 
dependencies are not known to the platform

❌ no support for heterogeneous hardware

Slide courtesy of Ana Klimovic (ETH Zurich)



Dandelion

Application
Layer

System
Layer

Dandelion: a new FaaS platform

Hardware
Layer

λ λ λ λ λ λ λ λ

CPU

Smart
Network 
Interface

Memory

G
P
U

F
P 
G
A

T
P
U

Storage

Slide courtesy of Ana Klimovic (ETH Zurich)

in

out

in

out

in

out

in

out

in

out

in

out

in

out

in

out

KEY IDEA: treat functions as functions!

Function = snippet of code that 
computes on declared inputs and 
produces declared outputs



Dandelion

Application
Layer

System
Layer

Dandelion: a new FaaS platform

Hardware
Layer

λ λ λ λ λ λ λ λ

CPU

Smart
Network 
Interface

Memory

G
P
U

F
P 
G
A

T
P
U

Storage

Application = composition (DAG) of 
compute functions (untrusted user code) 
& I/O functions (trusted platform code)

Slide courtesy of Ana Klimovic (ETH Zurich)

in

out

in

out

in

out

in

out

in

out

in

out

in

out

in

out

enable interaction with external storage services 
and between user compute functions 

KEY IDEA: treat functions as functions!

Function = snippet of code that 
computes on declared inputs and 
produces declared outputs



Dandelion

Example 
Application

System
Layer

Dandelion: a new FaaS platform

Hardware
Layer

λ λ λ λ λ

CPU

Smart
Network 
Interface

Memory

G
P
U

F
P 
G
A

T
P
U

Storage

Application = composition (DAG) of 
compute functions (untrusted user code) 
& I/O functions (trusted platform code)

Slide courtesy of Ana Klimovic (ETH Zurich)

in

out

in

out

in

out

in

out

in

out

enable interaction with external storage services 
and between user compute functions 

KEY IDEA: treat functions as functions!

Function = snippet of code that 
computes on declared inputs and 
produces declared outputs

H
TT

P
 G

ET

H
TT

P
 P

U
T



Dandelion

Example 
Application

System
Layer

Dandelion: a new FaaS platform

Hardware
Layer

λ λ λ λ λ

CPU

Smart
Network 
Interface

Memory

G
P
U

F
P 
G
A

T
P
U

Storage

Application = composition (DAG) of 
compute functions (untrusted user code) 
& I/O functions (trusted platform code)

Slide courtesy of Ana Klimovic (ETH Zurich)

in

out

in

out

in

out

in

out

in

out

enable interaction with external storage services 
and between user compute functions 

KEY IDEA: treat functions as functions!

Function = snippet of code that 
computes on declared inputs and 
produces declared outputs

H
TT

P
 G

ET

co
m

p
u

te

co
m

p
u

te

C
H

A
IN

H
TT

P
 P

U
T



Dandelion

Example 
Application

System
Layer

Dandelion: a new FaaS platform

Hardware
Layer

λ λ λ λ λ

CPU

Smart
Network 
Interface

Memory

G
P
U

F
P 
G
A

T
P
U

Storage

Application = composition (DAG) of 
compute functions (untrusted user code) 
& I/O functions (trusted platform code)

Slide courtesy of Ana Klimovic (ETH Zurich)

in

out

in

out

in

out

in

out

in

out

enable interaction with external storage services 
and between user compute functions 

KEY IDEA: treat functions as functions!

Function = snippet of code that 
computes on declared inputs and 
produces declared outputs

H
TT

P
 G

ET

co
m

p
u

te

co
m

p
u

te

C
H

A
IN

H
TT

P
 P

U
T

Application 
dataflow is 

explicit



Dandelion

Example 
Application

System
Layer

Dandelion: a new FaaS platform

Hardware
Layer

λ λ λ λ λ

CPU

Smart
Network 
Interface

Memory

G
P
U

F
P 
G
A

T
P
U

Storage

Slide courtesy of Ana Klimovic (ETH Zurich)

in

out

in

out

in

out

in

out

in

out

H
TT

P
 G

ET

co
m

p
u

te

co
m

p
u

te

C
H

A
IN

H
TT

P
 P

U
T

✅ Securely isolate functions without VMs (reduce 
attack surface by eliminating syscalls in user code) 

✅ Optimize function scheduling with dataflow info

✅ Offload pure compute and pure I/O tasks to 
heterogeneous hardware

KEY IDEA: treat functions as functions!

Benefits:



Dandelion

Application
Layer

System
Layer

Dandelion: a new FaaS platform

Hardware
Layer

λ λ λ λ λ λ λ λ

CPU

Smart
Network 
Interface

Memory

G
P
U

F
P 
G
A

T
P
U

Storage

Slide courtesy of Ana Klimovic (ETH Zurich)

KEY IDEA: treat functions as functions!

ETH Team:

Ana KlimovicTom Kuchler



Dandelion = Truly serverless

• The key element of serverless is that it hides a complex infrastructure, 
making it easier to use

• But the way it is done is by treating functions as black boxes

• Declarative Serverless
• Functions declare their needs: I/O, communication, connectivity, resources 

needed, etc.

• The serverless platform uses that information to optimize the deployment 
while providing a far better support and incurring less overhead in enforcing 
important features: isolation, performance, resource efficiency, etc. 

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich 31



Data Analytics on Serverless

Option 1 (redesign the engine)

• Build platforms that can run 
queries on current serverless

• Hack around limitations

• Accept constraints

• Significant development cost

• Unstable environment

• …

Option 2 (replace the stack)

• Build a better serverless 
platform

• Tailor it to wider use cases

• Not supported by vendors

• Higher costs 

• Often not truly serverless

• …

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich 32



Data Analytics on Serverless

Option 3 (use what is there)

• There are very many data analytic engines in the cloud

• Do we want to redo all that work?

• What if we can just run existing analytic engines of current 
serverless?

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich 33



Boxer: Achieving TCP in Serverless

TCP

λ

NAT

Application Process (A)

boxer-lib

Boxer (A)

Application Process (B)

boxer-lib

Boxer (B)

• Boxer NAT hole-punching service
• For local connection request

• For remote hole punch request

• Transparent compatibility module
• Intercepts relevant libc calls

SOCKET, BIND, CONNECT, LISTEN, 
ACCEPT, CLOSE

• Transparent to function process

• Boxer not involved after 
TCP connection established
(no SEND, RECV, EPOLL etc.)

34

connect(B) accept()

Slide courtesy of Michael Wawrzoniak



… more than just networking

• Hostname resolution,

• File system redirection, …

• Coordination service

• Distributed barriers,

• Node membership,

• Process id and role assignments, …

35

S3
Boxer

Compat. module

Compat. module

Compat. module

Coord

E

Slide courtesy of Michael Wawrzoniak



Per-request Datacenter

• TPC-H benchmark
sf.10 - 12GBytes, 
largest relation of almost 60 million tuples. 

• Data stored in S3

• 8-node Apache Drill + Zookeeper

• Off-the-self configuration, not optimized

Slide courtesy of Michael Wawrzoniak 36



Data Analytics on Serverless

• Boxer implements an overlay that makes serverless look like a 
“regular” VM 

• Analytic engines run unmodified and can be used to run any query in 
the same way they run on VMs

• It is not perfect:
• The engines are not optimized for serverless (e.g., fast startup)

• There are many things that reduce efficiency (e.g., resource waste)

• But this already gives us analytics on serverless

• Or does it?

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich 37



Conclusions

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich 38



Serverless as the new autonomous DB

• Serverless is here to stay but it will evolve in significant ways

• Currently, not suitable for data analytics
• But still worthwhile to explore the space

• We are exploring two approaches:
• A radical redesign of the serverless stack (from the provider perspective)

• An incremental extension of the serverless stack to facilitate the transition

• Boxer allows to run existing engines on serverless to explore the 
space and get important empirical data on what happens when 
running analytics on serverless

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich 39


